Higher Convexity and Iterated Sum Sets

نویسندگان

چکیده

Let f be a smooth real function with strictly monotone first k derivatives. We show that for finite set A, ?A + A? ?K?A?, $$\left| {{2^k}f(A) - ({2^k} 1)f(A)} \right|{ \gg _k}\,{\left| A \right|^{k 1 o(1)}}/{K^{{O_k}(1)}}.$$ deduce several new sum-product type implications, e.g. A+A being small implies unbounded growth many enough times iterated product ? A.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity and Haar Null Sets

It is shown that for every closed, convex and nowhere dense subset C of a superreflexive Banach space X there exists a Radon probability measure μ on X so that μ(C + x) = 0 for all x ∈ X. In particular, closed, convex, nowhere dense sets in separable superreflexive Banach spaces are Haar null. This is unlike the situation in separable nonreflexive Banach spaces, where there always exists a clos...

متن کامل

Sum of Squares and Polynomial Convexity

The notion of sos-convexity has recently been proposed as a tractable sufficient condition for convexity of polynomials based on sum of squares decomposition. A multivariate polynomial p(x) = p(x1, . . . , xn) is said to be sos-convex if its Hessian H(x) can be factored as H(x) = M (x) M (x) with a possibly nonsquare polynomial matrix M(x). It turns out that one can reduce the problem of decidi...

متن کامل

Inequalities and Higher Order Convexity

We study the following problem: given n real arguments a1, ..., an and n real weights w1, ..., wn, under what conditions does the inequality w1f(a1) + w2f(a2) + · · ·+ wnf(an) ≥ 0 hold for all functions f satisfying f (k) ≥ 0 for some given integer k? Using simple combinatorial techniques, we can prove many generalizations of theorems ranging from the Fuchs inequality to the criterion for Schur...

متن کامل

Sum-Free Sets and Related Sets

A set A of integers is sum-free if A\(A+A) = ;. Cameron conjectured that the number of sum-free sets A f1; : : : ; Ng is O(2 N=2). As a step towards this conjecture, we prove that the number of sets A f1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorica

سال: 2021

ISSN: ['0209-9683', '1439-6912']

DOI: https://doi.org/10.1007/s00493-021-4578-6